Intramolecular vibrational energy redistribution from a high frequency mode in the presence of an internal rotor: classical thick-layer diffusion and quantum localization.
نویسندگان
چکیده
We study the effect of an internal rotor on the classical and quantum intramolecular vibrational energy redistribution (IVR) dynamics of a model system with three degrees of freedom. The system is based on a Hamiltonian proposed by Martens and Reinhardt [J. Chem. Phys. 93, 5621 (1990)] to study IVR in the excited electronic state of para-fluorotoluene. We explicitly construct the state space and show, confirming the mechanism proposed by Martens and Reinhardt, that an excited high frequency mode relaxes via diffusion along a thick layer of chaos created by the low frequency-rotor interactions. However, the corresponding quantum dynamics exhibits no appreciable relaxation of the high frequency mode. We attribute the quantum suppression of the classical thick-layer diffusion to the rotor selection rules and, possibly, dynamical localization effects.
منابع مشابه
Intramolecular vibrational energy redistribution as state space diffusion: classical-quantum correspondence.
We study the intramolecular vibrational energy redistribution (IVR) dynamics of an effective spectroscopic Hamiltonian describing the four coupled high frequency modes of CDBrClF. The IVR dynamics ensuing from nearly isoenergetic zeroth-order states, an edge (overtone) and an interior (combination) state, is studied from a state space diffusion perspective. A wavelet based time-frequency analys...
متن کاملK-scrambling in a near-symmetric top molecule containing an excited noncoaxial internal rotor
Classical trajectories on rotational energy surfaces and coherent-state quantum projections have been used to study an asymmetric-top molecule containing a freely rotating internal symmetric top whose symmetry axis is not coincident with a principal axis of the molecule. Stationary points on the rotational energy surface, which strongly influence the trajectories, increase in number from two to...
متن کاملVibrational energy transport in the presence of intrasite vibrational energy redistribution.
The mechanism of vibrational energy flow is studied in a regime where a diffusion equation is likely to break down, i.e., on length scales of a few chemical bonds and time scales of a few picoseconds. This situation occurs, for example, during photochemical reactions in protein environment. To that end, a toy model is introduced that on the one hand mimics the vibrational normal mode distributi...
متن کاملSevere Impact on the Behavior of Energy Absorbing Cylindrical Base in Frontal Impact
In this paper, the vibration characteristics of multi-layer shell that internal and external surfaces with a layer of piezoelectric sensor and actuator is investigated. The backrest shell laminated with simple analytical method to evaluate and the results were compared with results obtained by other researchers. The numerical solution methods (GDQ) for shells with piezoelectric layers and plain...
متن کاملEFFECTS OF ALUMINIZING PARAMETERS ON THE MICROSTRUCTURE AND THICKNESS OF PT-ALUMINIDE COATING APPLIED ON A NI-BASE SUPERALLOY, GTD-111
In this research, effects of changes in aluminizing conditions on microstructure of Pt - aluminide coating applied oil a Ni - base superalloy GTD -111, has been studied. A thin layer (i.e.68,#mm ) of Pt was electroplated onto the surface of the .samples, and then they were aluminized by pack cementation technique under various conditions of time, temperature, rate of heating and pack powder com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 127 6 شماره
صفحات -
تاریخ انتشار 2007